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Computation of quasiclassical trajectories for the N(4S) + O2(X3�−
g ) →NO(X2�)

+ O(3P) atmospheric reaction system, based on a new ground potential energy sur-
face reported by R.Sayós et al., has been performed in this work by means of both
the fourth-order explicit symplectic algorithm (S4) and the fourth-order Runge–Kutta
scheme (RK4), and then computed results of two schemes are compared. It is shown
that RK4 cannot preserve energy conservation and symplectic structure of the reac-
tion system, which results in the bad veracity of the trajectory calculation. RK4 cannot
rightly reflect both the colliding mode and the reaction mode of the trajectories. More-
over, the amplitudes of vibration of the reactant molecule and the product molecule
become gradually small with the time increasing, and their rotation–vibrational levels
in fact vary during the integration. For these reasons, RK4 cannot assure the accuracy
of the quasiclassical trajectory (QCT) study of the atmospheric reaction. However, S4
maintains these characteristics and can actually describe the circumstance of the reac-
tion system. S4 is better than RK4 is prospective in the QCT study of the chemical
reaction.
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1. Introduction

The quasiclassical trajectory (QCT) method has gradually developed and
turned into an effectively academic method of the dynamics study in the chem-
ical reaction [1]. In the QCT study, motion of atomic nuclei on the electronic
potential energy surface (PES) has been described by the canonical equations
of Hamilton system and the integral method frequently used is Runge–Kutta or
Gear scheme [2–3]. The improvement of calculated results depends greatly on
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the PES accuracy of the reaction system, and the integral method that can pre-
serve some constancies of the reaction system is rarely noticed. The Hamilton
system has the symplectic structure. In the early 1980s, Ruth [4] and Feng Kang
[5] advanced respectively the symplectic algorithm that is a difference method
preserving the symplectic structure of Hamilton system, and then Feng Kang,
Qin Mengzhao and Yoshida et al. carried out a systemic study on the symplectic
algorithm [6–9]. To this day, the symplectic algorithm has been widely applied to
astronomy [10], plasma physics [11], quantum mechanics [12–13] and other fields.

The elementary atmospheric reaction, N(4S) + O2(X3�−
g ) → NO(X2�) +

O(3P), and its reverse reaction play an important role in the earth’s atmospheric
chemistry. This reaction is a source of infrared chemiluminescence in the ther-
mosphere [14]. High temperature studies of the kinetics and dynamics of the
atmospheric reaction and its reverse one are also significant to interpret the
chemical and physical phenomena taking place during the re-entry of spacecrafts
into the Earth’s atmosphere [15]. Some ab initio studies have been presented
about the ground (2A′) potential energy surface involved in this atmospheric
reaction [16–18]. Using on a new analytical fit of ab initio electronic structure
calculation for the ground PES reported by R.Sayós et al. [18] in this work, we
present a calculation of quasiclassical trajectories with the fourth-order explicit
symplectic algorithm [19] (S4) for the atmospheric reaction, and then the result
is compared to that computed by the fourth-order Runge–Kutta scheme (RK4).
It indicates that RK4 cannot preserve the energy constant and symplectic struc-
ture of Hamilton system, and computed trajectories actually do not describe the
motion of the reaction system. However, S4 keeps these constancies of the reac-
tion system, its results are markedly better than that of RK4. The organization
of this paper is as follows: section 2 introduces the canonical equations of the
atom–molecule reaction system and its fourth-order explicit symplectic algorithm
(S4). In section 3, the results of the calculation and some discussions are given.
Finally we have drawn some conclusions in section 4.

2. The computational method

In the atom–molecule (A + BC) reaction system, the mass of atom A, B, C,
respectively denotes mA, mB, mC. In the present case, A is taken to be the nitro-
gen atom (N), B is the first oxygen atom (O) and C is the second oxygen atom
(O). Because the reaction system has no outfield action, the momentum of the
reaction system is constant. Separating out the center-of-mass motion, we write
the internal Hamiltonian in the form

H = 1
2µB,C

3∑

j=1

P 2
j + 1

2µA,BC

6∑

j=4

P 2
j + V (Q1, Q2, . . . , Q6), (1)
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where Qj (j = 1, 2, . . . , 6) represents the generalized Cartesian coordinate, Pj

(j = 1, 2, . . . , 6) is the momentum conjugate to the Qj , V (Q1, Q2, . . . , Q6) is the
potential energy function, and the reduced masses are

µB,C = mBmC

mB + mC
, µA,BC = mA(mB + mC)

mA + mB + mC
.

Canonical equations of the reaction system are

Q̇j = ∂H

∂Pj

, Ṗj = − ∂H

∂Qj

= − ∂V

∂Qj

. (j = 1, 2, . . . , 6) (2)

From (1), the Hamiltonian is separable and has the following fourth-order
explicit symplectic algorithm [19]

P 1
j = P n

j − C1τ
(

∂V
∂Qj

)

Qn
j

, Q1
j = Qn

j + d1τ

(
∂H

∂Pj

)

P 1
j

,

P 2
j = P 1

j − C2τ
(

∂V
∂Qj

)

Q1
j

, Q2
j = Q1

j + d2τ

(
∂H

∂Pj

)

P 2
j

, (3)

P 3
j = P 2

j − C3τ
(

∂V
∂Qj

)

Q2
j

, Q3
j = Q2

j + d3τ

(
∂H

∂Pj

)

P 3
j

,

P n+1
j = P 3

j − C4τ
(

∂V
∂Qj

)

Q3
j

, Qn+1
j = Q3

j + d4τ

(
∂H

∂Pj

)

P n+1
j

, (j = 1, 2, . . . , 6)

where C1 = 0, C2 = C4 = α, C3 = β, d1 = d4 = α/2, d2 = d3 = (α + β)/2,

β = 1 − 2α, α = (2 − 21/3)−1.

3. Results and discussion

A lot of quasiclassical trajectories for the atmospheric reaction, based on a
new analytical fit of ab initio electronic structure calculation for the ground PES
reported by R. Sayós et al. [18], have been calculated by means of S4 and RK4.
The following is computed results of two integral schemes and the comparison
of them. (It should be noticed that RHO denotes the initial distance between the
N atom and the O2 molecule in a.u., Et denotes the relative translational energy
in eV, h is the time step size in second, v and J represent respectively, the vibra-
tional and rotational level of O2 molecule, R is the separate distance of nuclei
and the energy unit is taken to be kcal/mol.)

3.1. The deviation of total energy

Figure 1 depicts the comparison of total energies evolving with the time com-
puted respectively by S4 and RK4. From figure 1a, when RK4 is used in the cal-
culation, the total energy descends with the time increasing. This reveals that the
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Figure 1. Comparison of total energies evolving with the time computed respectively by RK4 and
S4: (a) Et = 0.3 eV, v = 0, J = 8, h = 5.0 × 10−16 s (non-reaction), (b) Et = 0.5 eV, v = 0,

J = 8, h = 5.0 × 10−16 s (reaction).

deviation of total energy for the reaction system will become larger if the time is
longer. We believe that the computed error contains the round error and the trun-
cation error. The phenomenon in figure 1a is accounted for that the deviation of
the total energy adds in value with the time since the truncation error continuously
accumulates during the integration. However, since the truncation error does not
accumulate with the integration using S4, no total energy loss occurs. Except that
the total energy computed by S4 shakes slightly near the exact value, it is almost a
constant in figure 1a. Since a reaction takes place in figure 1b (no reaction yet takes
place in figure 1a), the phenomenon in figure 1b is a little different from that in figure
1a. The curve of the total energy evolving with the time computed by RK4 in the
product part from figure 1b has a larger slope than in the reactant part, and mean-
while the vibrating amplitude of the total energy computed by S4 in the product part
is clearly larger than that in the reactant part. When no reaction happens (in figure
1a), the deviation of the total energy evolving with the time is mainly connected with
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the potential energy curve of O2 molecule. However, the deviation is determined by
the potential energy curve of O2 molecule before the reaction takes place, and it is
relative to that of NO molecule after the reaction if there is a reaction occurring (in
figure 1b). Figure 1b characterizes the effect of NO molecule on the energy error is
greater than that of O2 molecule.

The deviation of total energy with respect to the exact value respectively
computed by S4 and RK4 with different time step sizes at RHO = 300 a.u. and
Et = 0.4 eV is displayed in table 1. The results computed by RK4 in table 1a
indicate that the loss of total energy increases with the time step size rising at
the given initial condition of O2 molecule. When the vibrational level of O2 mol-
ecule (at J = 8) enlarges, the deviation of total energy increases in quantity at
the fixed time step size. The rotational level of O2 molecule (at v = 0) has almost
the same influence on the deviation of total energy except for J = 4 and J = 16.
Table 1b shows that the deviation of total energy computed by S4 exhibits either
positive or negative value because the computed value vibrates near the exact
energy value. The deviation of total energy computed by S4 is much less than
that computed by RK4 at the same condition suggests that S4 can better pre-
serve the total energy of the reaction system than RK4.

To research the affect of the initial distance on the deviation of total energy,
we have computed these deviations by RK4 and S4, which are represented in
table 2, with different initial distances at Et = 0.4 eV and h = 6.0 × 10−16 s. From
table 2a, the initial distance RHO becomes longer will result in that the loss of
total energy computed by RK4 at the given initial condition is enhanced. The
affect of the rotation–vibrational level on the deviation is similar to that in table
1a. Furthermore, the variable law of the deviation of total energy computed by
S4 in table 2b is still according with table 1b. Now, we note that the deviation
does not always grow up with the initial distance rising at v = 0, 1, 2 and J = 8
in table 2a. The reason is that the colliding case of trajectories (i.e., elastic col-
lision, inelastic collision and reactive collision) shifts when the initial distance
broadens and consequently the loss of total energy has a different trend.

3.2. The comparison of trajectories

Since RK4 cannot maintain energy conservation and symplectic structure
of the reaction system, the trajectories computed by RK4 have some evident
differences from those computed by S4 at the same condition. Figure 2 is the
comparison of some typical trajectories. First, the trajectories computed by RK4
at Et = 0.9 eV, v = 0,J = 16, RHO = 110 a.u and h = 4.0 × 10−16 s (in figure 2a)
clarify that no reaction occurs although the collision go through a transition
state. Moreover, after the O2 molecule collides with the N atom, the period and
amplitude of vibration of O2 molecule become large. From figure 2b, however, a
reaction that produces the NO molecule (the second oxygen atom) takes place.
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It is concluded that the loss of total energy may influence the colliding made
of the trajectories. Second, two differences exist in figure 2c and figure 2d that
respectively display the trajectories computed by RK4 and S4 at Et = 0.9 eV,
v = 0, J = 0, RHO = 220.0 a.u. and h = 7.5 × 10−16 s. One is the reaction mode,
that is, figure 2c is a direct reaction and figure 2d is an indirect reaction. Another
is that the product in figure 2c is the NO molecule (the first oxygen atom)
and there is a different NO molecule (the second oxygen atom) in figure 2d.
The third is that the amplitude of vibration of O2 molecule computed by RK4
becomes gradually small with the time increasing, however the value computed
by S4 is always consistent, as described in figure 2e (the comparison of trajecto-
ries in the reactant part at Et = 0.9 eV, v = 0, J = 8, h = 6.0 × 10−16 s). From
figure 2e, the amplitude computed by RK4 is much less than that computed
by S4 between 2.0 × 10−11 s and 2.03 × 10−11 s. The reduction of the ampli-
tude because of the loss of total energy corresponds in effect to the variation of
the rotation–vibrational level of O2 molecule before the collision. Thereby, the
initial condition of the reaction system cannot be preserved during the integra-
tion when RK4 is used. Finally, the comparison of the trajectories in the prod-
uct molecule part exhibits that the period and the amplitude of vibration of the
product NO molecule computed by RK4 are less than those computed by S4. In
the same way, the period and amplitude of vibration are relative to the rotation-
vibrational level of NO molecule, and from this the accuracy of the QCT study
of the rotation-vibrational level distribution of the product molecule cannot keep
by RK4.

3.3. Typical trajectories and reaction mode analysis

We calculate a large number of trajectories by S4 for the atmospheric reac-
tion, and some typical trajectories are sought out in figure 3 at different relative
translational energies and rotation–vibrational energy levels. Even though most
of the reactive trajectories evolve through a direct mechanism, some of them take
place in an indirect way, whose number is actually rare. Figure 3a and b show
the typical trajectories proceeding through an indirect mechanism. The N atom
approaches the O2 molecule until both N–O bonds are formed. And they keep
vibrating for about 3.0×10−12 s, eventually evolving towards product, giving rise
to a reaction at either end of the O2 molecule. Figure 3a display that the N
atom links with the first oxygen atom to make the NO molecule, however the
reaction product in figure 3b is consisted of the N atom and the second oxy-
gen atom. The typical trajectories in a direct mechanism are manifested in fig-
ure 3c. The N atom approaches continuously to the O2 molecule, in such a way
that the vibration of O2 molecule does not influence by the incoming N atom
until the NO bond distance is almost reached. When the NO molecule is formed,
the O–O distance grows fast. Figure 3d in which no reaction occurs displays a
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Figure 2. Comparison of trajectories evolving with time computed respectively by RK4 and S4. (a)
Et = 0.9 eV, v = 0, J = 16, RHO = 110.0 a.u., h = 4.0 × 10−16 s (by RK4). (b) Et = 0.9 eV,
v = 0, J = 16, RHO = 110.0 a.u., h = 4.0 × 10−16 s (by S4). (c) Et = 0.9 eV, v = 0, J = 0,
RHO = 220.0 a.u., h = 7.5 × 10−16 s (by RK4). (d) Et = 0.9 eV, v = 0, J = 0, RHO = 220.0 a.u.,
h = 7.5 × 10−16 s (by S4). (e) Et = 0.9 eV, v = 0, J = 8, h = 6.0 × 10−16 s (O2 molecule).

(f) Et = 0.6 eV, v = 0, J = 8, h = 5.0 × 10−16 s (NO molecule).
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Figure 3. Typical trajectories and reactive mode analysis at h = 1.0 × 10−16 s and RHO = 40.0 a.u.
(a) Et = 0.5 eV, v = 0, J = 8 (b) Et = 0.6 eV, v = 0, J = 8 (c) Et = 0.9 eV, v = 0, J = 0

(d) Et = 0.3 eV, v = 0, J = 16.

typically elastic collision, where the period and amplitude of vibration of O2

molecule have no variation after the N atom collides with O2 molecule. The
inelastic collision that changes the internal energy of O2 molecule also exists, and
we do not exhibit for simplicity.

4. Conclusions

Based on a new analytical fit of ab initio electronic structure calculation for
the ground PES reported by R. Sayós et al., we have presented the computa-
tion of quasiclassical trajectories for the N(4S) + O2(X3�−

g ) → NO(X2�) + O(3P)
atmospheric reaction system by means of both S4 and RK4, and then the com-
puted results of two schemes are compared. It is known that RK4 cannot pre-
serve energy conservation and symplectic structure of the reaction system, which
result in the bad veracity of the trajectory calculation. Because of the loss of
total energy, RK4 cannot rightly reflect both the colliding mode and the reac-
tion mode of the trajectories. The amplitude of vibration of the reactant O2
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molecule becomes gradually small with the time increasing, and the initial con-
dition of O2 molecule is correspondingly transformed before the reaction. Since
RK4 also reduce the amplitude of the product NO molecule, it cannot guar-
antee the accuracy of the study of the rotation–vibrational level distribution of
the product molecule. However, S4 maintains energy conservation and symplec-
tic structure of the reaction system and can actually describe the colliding tra-
jectories of the reaction system. Moreover, since S4 can choose larger time step
size, it may markedly save the computed time of the QCT study. It is concluded
that S4 is better than RK4 in the QCT study of the chemical reaction. If the S4
takes the place of the usual integral method (It is RK4 here), the validity and
the reliability of the QCT study may be improved.
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